Eindhoven University of Technology MASTER Numerical approximation of the Boltzmann equation moment closure

نویسندگان

  • Abdel Malik
  • Michael Raouf Aziz
  • Harald van Brummelen
چکیده

This work applies the moment method onto a generic form of kinetic equations, given by the Boltzmann equation, to simplify kinetic models of particle systems. This leads to the moment closure problem which is addressed using entropy-based moment closure techniques utilizing entropy minimization. The resulting moment closure system forms a system of partial differential equations that retain structural features of the kinetic system in question. This system of partial differential equations generate balance laws for velocity moments of a kinetic density that are symmetric hyperbolic, implying well-posedness in finite time. In addition, the resulting moment closure system satisfies an analog of Boltzmann’s H-Theorem, i.e. solutions of the moment closure system are entropy dissipative. Such a model provides a promising alternative to particle methods, such as the Monte Carlo approaches, which can be prohibitive with regard to computational costs and inefficient with regard to error decay. However, several challenges pertaining to the analytical formulation and computational implementation of the moment closure system arise. These challenges are addressed in this work. The entropy minimization problem is studied in light of the classical results by Junk [18] showing that this technique suffers from a realizability problem, i.e. there exists realizable moments such that the entropy minimizer does not exist. Recent results by Hauck [17], Schneider [31] and Pavan [29] are used to investigate and circumvent this issue. The resulting moment closure system involves moments of exponentials of polynomials of, in principle, arbitrary order. In the context of numerical approximations, this is regarded as a complication. A novel and mathematically tractable moment system is developed that is based on approximating the entropy minimizing distribution. It will be shown that the resulting system retains the same structural features of the kinetic system in question. This system can be seen as a refinement of Grad’s original moment system [15, 32]. Finally, a numerical approximation of the resulting moment systems is devised using discontinuous Galerkin (DG) finite elements method. Energy analysis based on the work of Barth [1, 2] is employed to investigate energy stable numerical flux functions to be used for the DG discretization of the moment systems. In contrast to the work of Barth [1], the numerical flux function suggested for the tractable system does not require a simplified construction since it is computable. In addition, higher order (approximated) moment systems, beyond the 10-moment system investigated by Barth [1], can be considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Discontinuous Galerkin Approximations of Boltzmann Moment Systems With Levermore Closure

This work considers the discontinuous Galerkin (DG) finite element discretization of first-order systems of conservation laws derivable as moments of the kinetic Boltzmann equation with Levermore (1996) closure. Using standard energy analysis techniques, a new class of energy stable numerical flux functions are devised for the DG discretization of Boltzmann moment systems. Simplified energy sta...

متن کامل

Hierarchical Moment Closure Approximation of the Boltzmann Equation

This work discusses the application of the moment method to a generic form of kinetic equations, given by the Boltzmann equation, to simplify kinetic models of particle systems. Implicit to the method of moments is an approximation of moment closure relations to close the system of equations. The main aim is to explore the opportunities, pertaining to goal-oriented adaptive modeling, presented ...

متن کامل

Film cooling effectiveness in single row of holes: First moment closure modeling

The present article focuses on the evaluation of a first-moment closure model applicable to film cooling flow and heat transfer computations. The present first-moment closure model consists of a higher level of turbulent heat flux modeling in which two additional transport equations for temperature variance kθ and its dissipation rate εθ are ...

متن کامل

Numerical Simulation of Fluid Flow Past a Square Cylinder Using a Lattice Boltzmann Method

The method of lattice boltzmann equation(LBE) is a kinetic-based approach for fluid flow computations. In the last decade, minimal kinetic models, and primarily the LBE, have met with significant success in the simulation of complex hydrodynamic phenomena, ranging from slow flows in grossly irregular geometries to fully developed turbulence, to flow with dynamic phase transitions. In the presen...

متن کامل

Natural Convection and Entropy Generation in Γ-Shaped Enclosure Using Lattice Boltzmann Method

This work presents a numerical analysis of entropy generation in Γ-Shaped enclosure that was submitted to the natural convection process using a simple thermal lattice Boltzmann method (TLBM) with the Boussinesq approximation.  A 2D thermal lattice Boltzmann method with 9 velocities, D2Q9, is used to solve the thermal flow problem. The simulations are performed at a constant Prandtl number (Pr ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017